skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Xu, Lijing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study probes the mechanisms by which volatile solvents (water, ethanol) and a nonionic surfactant (Triton X-100) influence the skin permeation of dissolved solutes following deposition of small doses onto unoccluded human skin. A secondary objective was to sharpen guidelines for the use of these and other simple solvent systems for dermal safety testing of cosmetic ingredients at finite doses. Four solutes were studied – niacinamide, caffeine, testosterone and geraniol – at doses close to that estimated to saturate the upper layers of the stratum corneum. Methods included tensiometry, visualization of spreading on skin, polarized light microscopy and in vitro permeation testing using radiolabeled solutes. Ethanol, aqueous ethanol and dilute aqueous Triton solutions all yielded surface tensions below 36 mN/m, allowing them to spread easily on the skin, unlike water (72.4 mN/m) which did not spread. Deposition onto skin of niacinamide (32 ug·cm^2) or caffeine (3.2 ug·cm^2) from water and ethanol led to crystalline deposits on the skin surface, whereas the same amounts applied from aqueous ethanol and 2% Triton did not. Skin permeation of these compounds was inversely correlated to the extent of crystallization. A separate study with caffeine showed the absence of a dose-related skin permeability increase with Triton. Permeation of testosterone (8.2 ug·cm^2) was modestly increased when dosed from aqueous ethanol versus ethanol. Permeation of geraniol (2.9 ug·cm^2) followed the order aqueous ethanol > water ~ 2% Triton >> ethanol and was inversely correlated with evaporative loss. We conclude that, under the conditions tested, aqueous ethanol and Triton serve primarily as deposition aids and do not substantially disrupt stratum corneum lipids. Implications for the design of in vitro skin permeability tests are discussed. 
    more » « less
  2. This publication was an oral presentation of Ms. Xu's research given at a college research conference on Apr. 1, 2023. 
    more » « less
  3. This publication is a poster describing her research presented by Ms. Xu at the 2022 SCC annual meeting, held Dec. 12-14 in Los Angeles, CA. 
    more » « less